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ABSTRACT

The advancement of semiconductor technology ushered the development of some
state of the art techniques for the analysis, design, and optimization of the semiconductor
devices. Available device simulators are inadequate to represent the physical devices with
shrinking dimensions. In order to explore the electromagnetic wave effects on the behavior
of the submicron semiconductor devices and amplifier circuits, a combined electromagnetic
and solid-state (CESS) simulator has been developed. The CESS simulator couples a 3D
time-domain solution of Maxwell's equations to the semiconductor model. The
semiconductor model is based on the moments of Boltzmann transport equations. When
the semiconductor device operates in microwave and millimeter-wave range, with the
device width comparable to the electromagnetic wave length and the short wave period
may be comparable to the electron relaxation times, the interactions of conducting electrons
with the electromagnetic waves cannot be neglected. The exchange of energy takes place
between the electrons and the electromagnetic waves. The CESS model can predict the
nonlinear energy build-up inside the transistor. The other advantage is it’s ability to show
the dispersive nature of the device, specially at high frequencies. It is a very powerful and
accurate simulator for high frequency devices. The electromagnetic forces on the electrons
are derived from Maxwell's equations and the electron transport characteristics are
obtained from the hydrodynamic model. It uses the finite-difference time-domain (FDTD)
algorithm for discretization. To overcome the computational intensity of the model, parallel
algorithms were developed, and the numerical simulations were performed on a Massively
Parallel machine (MasPar).

Successful numerical simulations of typical microwave Metal Semiconductor Field
Effect Transistor (MESFET) and Modulation Doped Field Effect Transistor (MODFET)
were carried out using the CESS model. The simulation uses electromagnetic wave

concept to show better performance of MODFET over MESFET. The intrinsic small signal
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parameters are extracted for these devices from the ac dynamic approach as well as from
the quasi-static analysis. The dependence of intrinsic small signal parameters on frequency
as well as on bias is reported. In ac analysis, some interesting behaviors are noticed for the
two devices. Some of the results are validated with the available published works.

To demonstrate the potential of the CESS simulator further, microwave and
millimeter-wave integrated circuit amplifiers are characterized using a global modeling
technique. Global modeling of millimeter-wave circuits is important to simulate the
electromagnetic coupling, device-EM wave interaction, and the EM radiation effects of the
closely spaced active and passive components of the MMICs. The characterization of
amplifier circuits including the input and output matching networks are performed using a
full-wave analysis coupled with physical modeling of the semiconductor devices. The
entire amplifier is simulated with FDTD algorithm which also solves for the
electromagnetic fields inside the transistor. The intensive computer memory requirement
and the large simulation time are reduced by applying a hybridization approach. The small
signal as well as the large signal propagation through the amplifier circuit are
demonstrated. The scattering parameters are extracted for the amplifier circuit at small and
large signals for different frequencies. The global technique is able to model the
nonlinearity and the harmonic distortion of the amplifier circuit. The third and fifth
harmonic components in the output spectrum at large signal are predicted for different
frequencies. The results of this research present tremendous contribution towards device

optimization and commercial MMIC system design.
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CHAPTER 1
INTRODUCTION
1.1. Submicron Device Potentials

The submicron semiconductor devices are considered the superfast transistors in
semiconductor technology. They switch on or off in only slightly more than 10
picoseconds. These devices are used in supercomputers, microwave amplifiers,
instrumentation, and digital switches. The Metal Semiconductor Field Effect Transistor
(MESFET) and the Modulation Doped Field Effect Transistor (MODFET) belong to this
group. They have high speed, low power consumption and potentially simple fabrication.
They are superior in high speed applications to devices made with any other technology
[1]. The power-delay continuums of important transistor technologies are shown in Fig.
1.1. The diagonal lines are lines of constant power-delay product. Only the Josephson
junction offers comparable propagation delay and low power dissipation than MODFET at
77K. However, the system integration and fabrication difficulties of Josephson junction

appear insurmountable in the near future.
1.2. Physical Modeling of Microwave Semiconductor Devices

With the advancement of semiconductor technology, the techniques required to
analyze, design, and optimize the semiconductor devices are becoming increasingly
sophisticated. Computer simulation programs are now essential tools for device engineers.
These numerical simulations based on physical modeling can be used to predict and
provide better understanding of the device behavior. This approach becomes more
desirable to understand the physical phenomena resulting from the ever-decreasing device

dimensions. Higher voltage gain, operating frequencies, and speed in FETs are achieved
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usually by using submicron gate length. A review of the physical device simulation,
development and recent trends can be found in [2] and the references therein.

The present device simulators are unable to predict the device behavior as the
dimensions shrink to sub-micrometers. The down-sizing of the active device dimensions
has presented new challenges to the device and circuit designer. The behavior of sub-
micron devices does not always follow the well understood and well recognized pattern of
their large counterparts and it is necessary to use more detailed device models. A
comprehensive semiconductor device model will play an important role in extending the
knowledge of device designers, engineers, and physicists. As such, the development of a
new device simulator is now an active area of research.

Analytical techniques [3]-[4] are not suitable for modeling submicrometer devices.
because it is difficult to model the multidimensional fields and carrier distributions in the
active layer of the device. The measurement-based empirical model requires extensive
experimental data to establish a good basis for design. One additional problem with such
an approach is that the used equivalent circuits fail to include other phenomena that have a
significant impact on microwave device characteristics, such as thermal effects, trapping
and wave-device interaction.

In submicron semiconductor devices, several new transport phenomena develop
and, consequently, have to be considered in device modeling. For very short gate lengths,
the electrons do not reach steady-state transport conditions while traveling along the
conducting channel. This is due to the high fields being built up in the channel, which give
rise to the velocity overshoot phenomenon. In a nonstationary-dynamic situation, the
qQuasi-static velocity-field relationship is not valid. To incorporate the effects of
nonstationary dynamics in semiconductor modeling, transport parameters are taken as

functions of average electron energy rather than the local electric field. Another effect to be



considered in device modeling is electron heating. As the electrons travel in high-field
regions, the average energy of the electrons is increased by the field. The electrons are said
to be hot since their equivalent temperature is greater than that of the lattice, thus causing

variations in the electron distribution function.
1.3. Global Modeling of Microwave Amplifiers

The microwave amplifier consists of an input matching network, a transistor, and
an output matching network. The currently available amplifier design and modeling
techniques mostly deal with the equivalent circuit parameters or the scattering parameters
of the transistors and couple them with the input and the output matching networks. This
process of replacing the active device with the equivalent sources or the cquivalent circuit
parameters is unable to represent the nonlinearity of the device accurately at microwave
and millimeter-wave frequencies. The alternative approach would be to simulate the input
matching network, the transistor, and the output matching network together with an
accurate FDTD algorithm. But the FDTD method requires intensive computer memory and
consumes a considerable amount of time for its operation. The development of a
comprehensive global modeling technique is required which would lower the memory
requirement and simulation time and give the accurate physical characteristics of the

amplifier as well.
1.4. Different Modeling Schemes

A commonly used starting point in semiconductor transport theory is the
Boltzmann transport equation (BTE). A number of analytical and numerical models have
been developed to solve this equation in different semiconductor problems. The Monte
Carlo technique provides the most accurate solution but it requires enormous

computations. The hydrodynamic equations, obtained from the moments of BTE, has



played an important role in device technology. The drift-diffusion and the quantum

transport models are the other alternatives.
1.4.1. Drift-Diffusion Model

The drift-diffusion model in 1-D was first demonstrated by Shockley in 1949 [5]
and it was extended in 3-D in 1950 [6]-[7]. Bardeen and Shockley proposed the dopant-
dependent variable energy bandgap [8] and Kroemer suggested that a position-dependent
bandgap would effect the flow of electrons and holes like a quasi-electric field [9]. The
drift diffusion model can be derived from the time-independent BTE. The simplified form
of this equation is obtained by neglecting the carrier energy gradient term considering the
carrier temperature to be the same order of magnitude as the lattice temperature. The drift-
diffusion simulation approach has been the main tool for practical device engineering
applications. As device feature sizes are reduced to submicron length, device simulation
faces new challenges. A simple drift-diffusion model is no longer adequate. Instead, a full
hydrodynamic model based on moments of BTE must be used to investigate the
nonstationary and hot electron dynamics, which allows the distinction of the momentum

and energy relaxation times.
1.4.2. Monte Carlo Method

Monte Carlo model employs a statistical and iterative approach to obtain average
effects of the various physical transport processes occurring inside the semiconductor
devices [10]-[15]. The Monte Carlo technique is a statistical numerical method which is
applied to the simulation of random processes.

The Monte Carlo simulation requires a detailed definition of the physical system in
terms of the material parameters, the energy band structure, scattering rates, and the lattice

temperature. The forces acting on the particles consist of applied electric and magnetic



fields and scattering mechanisms. The applied external fields and a set of initial conditions
must be specified. The simulation then follows the motion of electrons in momentum
space, where pseudorandom numbers controls the stochastic scattering processes. The
motion of each electron consists of free flights between scattering events (collisions). It is
usually assumed that between collisions the electron is accelerated in a constant field and
obeys the classical laws of motion governed by the energy band structure of the material.
The collisions are random events which have probabilities which are prescribed functions
of energy. Pseudorandom numbers control the duration of free flight and the choice of
scattering process. The information obtained from each free flight is used to determine the
parameters required from the simulation. The exact treatment of the results collected from
the simulation will depend on the nature of the simulation (steady state or transient) and the
information required.

The length of the simulation (particle 'history’) will depend on whether steady state
or transient information is required. In the case of steady state simulations the history must
be long enough so that the choice of initial conditions does not influence the final outcome.
This often requires greater than 20000 collisions, and the process can be optimized by
dividing the simulation into several 'sub-histories’, using the final state of previous sub-
history as the initial state of each new sub-history. This approach cannot be used in
transient simulations since the initial distribution of electronic states for a specific physical
system determines the initial transient, and is an integral part of the solution process which
determines the final outcome.

Although this method is often the most accurate method available for device
simulation, it suffers from some severe limitations. First, the statistical uncertainty in the
results may sometimes lead to confusion between the actual values and statistical noise,
especially for low-tield simulations. Second, in bipolar devices where both electrons and

holes contribute to transport, electron-hole recombination poses a special problem to the



MC method because the time scales involved are so much longer than the relaxation times
that characterize transport. Finally, this approach requires excessive computational effort

that makes it impractical to have repeated runs of the simulation.
1.4.3. Quantum Transport Model

Quantum transport model is based on the Liouville-von Neumann equation for the
statistical density matrix. This model is usually used for the devices with gate length less
than 0.1 pm. Major theoretical concepts and methods of quantum transport have been
developed in studying a variety of semiconductor systems. These includes the Density

matrix, Feynman path integral [16], Green's function [17], and Wigner function [18], etc.

1.5. The Hydrodynamic Model

For submicrometer gate devices not less than 0.1 um in length, the Boltzmann
Transport Equation (BTE) gives an accurate approximation of the electron transport
phenomena. The BTE specifies the temporal and spatial variations of the electron
distribution function, f(r, k, t), as follows:
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The hydrodynamic model uses approximations to the BTE by deriving a set of
equations representing the carrier transport variables. By carefully integrating the BTE and
its moments over k-space, and by averaging these equations over the different conduction
valleys, one can derive a set of equations that describes the macroscopic behavior of the
semiconductor. The resulting set of equations is similar to that which describes the flow of
fluids, and is commonly referred to as the hydrodynamic model. Blotekjaer used the

hydrodynamic model for two valley semiconductors with a phenomenological description



of collision [19]. Shur [20] suggested that this procedure can be utilized in device
simulation.

The hydrodynamic equations represent the conservation of carrier density, energy
and momentum and furnish the foundation for electron transport. However, they are too
complicated even for numerical solutions, and they would be of great interest if they are
simplified by means of proper approximations. These equations are strongly-coupled,
highly-nonlinear partial differential equations. Several researchers have attempted to solve
the hydrodynamic equations using different sets of simplifying assumptions. Some
simplifications may be absolutely necessary to make the device modeling possible.
However, such simplifications should be carefully introduced to avoid unnecessary loss of
accuracy in the device model.

Carnez et al. [21] described a simplified model based on a one dimensional
representation of the electric field and took into account only the time variations in energy
and electron velocity. They obtained some improvements in the maximum current and in
the transconductance over the classical drift-diffusion model. The hydrodynamic equations
were simplified by neglecting the relaxation effects in energy and momentum equations
[22]. It was concluded that the energy transport effects are quite important in GaAs
devices. Snowden and Loret [23] used the energy and momentum conservation equations
and expressed the momentum conservation equation in terms of electron temperature.
They showed that the electron temperature gradients could not be ignored in submicron-

gate FETs.

The simulation using the hydrodynamic equations was improved further by
solving the energy conservation equation in the complete form together with a simplified
form of the momentum conservation equation [24]-[25]. The simplification in the

momentum conservation equation is done by neglecting the time and space dependencies



of the electron velocity. This is equivalent to the assumption that the electron momentum is
able to adjust itself to a change in the electric field within a very short time. While this
assumption is justified for long-gate devices because of the negligible effects of the
overshoot phenomena, it needs to be investigated for short-gate cases. Feng and Hintz
[26] have shown that the spatial energy distribution is strongly two-dimensional. They
have also shown that for accurate transport modeling, the complete form of the
hydrodynamic equations has to be used for simulation. However, they made major
simplifications in the velocity equation in order to formulate the current density according

to the Scharfetter-Gummel technique.
1.6. Numerical Simulation

The analytical models provide approximate solutions to the semiconductor
equations for some specific device structures. However, it is generally not possible to
obtain closed-form solutions which accurately describe the operation of many current
semiconductor devices. A more complete and accurate solution may be obtained by using
numerical methods to solve the semiconductor equations over a particular domain defined
by the device geometry. Although some level of approximation is still necessary to make
the solution tractable, usually because of computational limitations, numerical techniques
allow multi-dimensional device problems to be solved to a high degree of accuracy and
provide a useful insight into the physics of devices. The appeal of numerical simulations
continues to increase with the availability of more powerful computers.

There are a variety of numerical methods available for use in semiconductor device
simulations. The finite-difference (FD) and finite-element (FE) schemes are very attractive
for semiconductor equations. Both the methods solve a set of discretized equations across
the specified domain of the device model. The actual formulation of the solution technique

is, however, quite different for the two methods. The FE method provides a flexible way
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of solving complex geometries and requires fewer nodes than the finite difference scheme.
but it requires a matrix re-ordering algorithm to deal with the generated complex matrix
structure. This re-ordering of the matrix minimizes the computer storage requirements and
speeds up the computation [27]. The main disadvantage of this method is its increased
complexity of programming and greater density of matrix equations. This process slows
down the solution. The FD method, on the other hand, lends itself naturally to the simple
rectangular geometry generally considered for semiconductor device simulations. Also.
FD schemes are easier to formulate and considerable information is available on their

stability and convergence properties.

Scharfetter and Gummel introduced the FD technique in semiconductor device
simulation for the first time [28]-[29]. They analyzed the behavior of diodes and
transistors using Poisson and continuity equation interactively in one-dimensional drift-
diffusion model. The Gummel method was extended later in two-dimensions to account
for the longitudinal as well as the transverse variations in electric field [30]. The energy
conservation equation was included in the numerical solution to investigate the velocity
overshoot and the hot electron phenomena. T. W. Tang [31] and A. Forghieri et al. [32]
extended the Gummel technique to insure the stability and efficiency of the model. The
stability properties of the FD formulations of the drift-diffusion model were extensively
investigated in [33]-[34]. However, the stability properties of FD based solutions of the

complete hydrodynamic model need to be analyzed thoroughly.
1.7. Computational Aspects

In order to handle the enormous computational intensity of the numerical scheme,
parallel implementation is incorporated in semiconductor device simulations. This

computational intensity is a result of the limitations on space and time increments as well
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as the required long simulation-time to obtain the steady-state results. In the past several
years, massively parallel computations in the field of semiconductor device simulations
has become very popular [35]-[36]. The availability of parallel computers is constantly
increasing. In fact, they are the new generation of supercomputer architectures in this
decade. This change in computing architectures resulted in a change in programming
models and languages. The single instruction, multiple-data (SIMD) model is implemented
by several parallel machines that are used extensively in research and industry, such as the
Connection Machine (CM-5) and the Massively Parallel Machine (MasPar). These
machines support parallel versions of the programming languages such as FORTRAN and
C. The SIMD machines with mesh connected processor arrays are the most suitable
architecture for the FD based numerical schemes. The rectangular computational array
used in the FD formulation can be directly mapped on the machine processor array. The
physical limitations of the machine can be overcome by careful utilization of the virtual

memory.
1.8. Necessity of Electromagnetic Model in Submicron Device Simulation

The quasi-static form of the Poisson's equation (E=-V ¢) is widely used by the
researchers to obtain the electric field in the physical device modeling. In submicron
devices, the coupling between the electrons and the propagating electromagnetic waves can
not be neglected at high frequencies. In such cases, the quasi-static semiconductor device
models fail to represent accurately the exact device response. Besides this, special care
should be taken at high frequency device modeling. The short period of the propagating
wave approaches the electron relaxation time and as the electrons need a finite time to
adjust their velocities to the changes in field, electron transport is directly affected by the
propagating wave. In addition, the electrodes extending along the device width behave like

transmission lines with nonlinear characteristics. These facts call for the necessity of
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incorporating wave effects in a three-dimensional model. This goal can be achieved by
taking full account of the varying fields inside the device. The acceptable method for
representing these various forces is to combine an electromagnetic model with a
semiconductor device model which leads to the Combined Electromagnetic and Solid-State
(CESS) simulator.

The performance of photoconductive switches was studied by El-Ghazaly et al.
using a combination of Maxwell’s equation and Monte Carlo model [37]. The Monte Carlo
model requires a very large simulation time. This model is not suitable for transistor small
and large signal responses where considerable amount of time is required. The CESS
model is indispensable in this case. It is a very powerful tool for analyzing the behavior of
GaAs MESFET [38]. Some of the reasons for the importance of the CESS model are
summarized below:

(1) The CESS model is capable of simulating an integrated circuit using the FDTD
algorithm.

(2) It can predict the nonlinear energy build-up inside the semiconductor device.

(3) This model has the ability to show the dispersive nature of the device, specially at

high frequencies.

(4) It becomes indispensable when the conducting electrons inside the device interact with
the electromagnetic wave.

(5) It is important when the short oscillation period approaches the electron relaxation
times and the device propagating wave length becomes comparable to device width.

(6) It is needed when the time varying electric field is large compared to the dc field in the
switching and large signal problems.

(7) This model can be used to study the discontinuity problems when the semiconductor

device is connected to the input and the output matching networks.






