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Abstract— We present an implicit finite element time-domain
(FETD) solution of the Maxwell equations. The time-dependent
formulation employes a time-integration method based on the
alternating-direction implicit (ADI) method. The ADI method is
directly applied to the Maxwell equations in order to obtain
an unconditionally stable FETD approach. The method uses
edge elements for electric field and facet elements for magnetic
flux density. The advantage of this formulation based on the
ADI scheme is that the time step is no longer governed by the
spatial discretization of the mesh, but rather by the spectral
content of the time-dependent signal. Numerical formulations are
presented and simulation results are compared to those using the
conventional FETD method.

Index Terms— Alternating-direction implicit (ADI) method,
finite element time-domain (FETD) method, Maxwell’s equations.

I. INTRODUCTION

In the past few years, numerical methods have been ex-
tensively used to solve the Maxwell equations in the time
domain for the analysis of transient problems. Moreover, it
is often important to analyze systems in a large frequency
band. Time-domain methods are well suited to achieve this
target, because they can obtain broadband information from a
single computation. In electromagnetic compatibility (EMC)
studies or antenna analysis, for instance, we can obtain the
response of a system over a wide frequency band by using a
large-band transient signal as excitation and by applying the
Fourier transform on the results. This can give a significant
reduction of the computational cost compared to frequency
domain calculations.

Several methods can be used to calculate the time domain
solution of electromagnetic problems. The most popular one
is the finite difference time-domain (FDTD) algorithm, intro-
duced by Yee in 1966 [1]. The FDTD method discretizes the
time-dependent Maxwell curl equations using central differ-
ences in time and space and a leap-frog explicit scheme for
time integration. Its principal advantage is ease of implemen-
tation. However, in its conventional form, the grid for the
spatial discretization is Cartesian and uniform in nature. Con-
sequently, the FDTD method restricts geometry representation
to stair-stepped-shaped boundaries, which results in a large
burden on the memory resources and the CPU time, when
the method is applied to geometries with curvature and/or
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atures. Finite element time-domain (FETD) methods
e the advantages of a time-domain technique and the
ity of their spatial discretization procedures [2]. They
ccurate modeling of complex structures with arbitrary
regions and take easily inhomogeneous materials into

t.
FETD approaches developed so far can be grouped into
sses. One class of approaches directly solves Maxwell’s
ns and operates in a leap-frog fashion similar to the
method (explicit method). These approaches are condi-
stable [3], [4]. Another class of FETD approaches use

ond-order vector wave equation, or the curl-curl equa-
tained by eliminating one of the filled variables from
ll’s equations. These solvers can be formulated to be
itionally stable [5], [6] or conditionally stable [7], [8].
unconditionally stable scheme the time step is not
ined by a stability criterion. However, it is limited by
uracy requirement and also by the spectral content of
al signatures. Therefore, if the minimum cell size in
putational domain is required to be much smaller than
elength, these schemes are more efficient in terms of
er resources such as CPU time.
ntly, a new method called the alternating direction
t finite-difference time-domain (ADI-FDTD) method
n introduced to solve Maxwell’s curl equations using

ifference discretization [9]. This method is an attractive
ive to the standard FDTD due to its unconditional

with moderate computational overhead. In this paper
approach based on the ADI technique is presented.

chnique is directly applied to the first order Maxwell’s
ns and leads to an unconditionally stable approach.

I technique was first applied to Yee’s grid in order
ulate an implicit FDTD scheme [9]. Here, we applied
hnique to the FETD method to offer an unconditionally
nite element time-domain method.

II. ADI PRINCIPLE

explanation of the ADI method as a technique for
elopment of an implicit integration scheme, the time-
ent curl vector equations of Maxwell’s equations are
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considered:

∇× E = −∂B
∂t

∇× H =
∂D
∂t

+ J (1)

These equations can be cast into six scalar partial differen-
tial equations in the Cartesian coordinates. We consider the
following scalar equation from the above given system:

∂Hz

∂t
=

1
μ

(
∂Ex

∂y
− ∂Ey

∂x

)
(2)

By applying the ADI principle which is widely used in solving
parabolic equations [10], the computation of equation (2) for
the FETD solution marching from the nth time step to the
(n + 1)th time step is broken up into two computational
subadvancements: the advancement from the nth time step
to the (n + 1/2)th time step and the advancement from the
(n + 1/2)th time step to the (n + 1)th time step. More
specifically, the two substeps are as follows:

1) For the first half-step, i.e., at the (n + 1/2)th time
step, the first partial derivative on the right hand side
of (2), ∂Ex/∂y, is replaced with its unknown pivotal
values at (n+1/2)th time step; while the second partial
derivatives on the right hand side, ∂Ey/∂x, is replaced
with its known values at the previous nth time step. In
other words:

H
n+ 1

2
z − Hn

z

Δt/2
=

1
μ

(
∂E

n+ 1
2

x

∂y
− ∂En

y

∂x

)
(3)

2) For the second half time step, i.e., at (n + 1)th time
step, the second term on the right hand side, ∂Ey/∂x,
is replaced with its unknown pivotal values at (n+1)th
time step; while the first term, ∂Ex/∂y, is replaced with
its known values at the previous (n + 1/2)th time step.
In other words:

Hn+1
z − H

n+ 1
2

z

Δt/2
=

1
μ

(
∂E

n+ 1
2

x

∂y
− ∂En+1

y

∂x

)
(4)

The above two substeps represent the alternations in the FETD
recursive computation directions in the sequence of the terms,
the first and the second term. They result in the implicit
formulations as the right hand side’s of the equations contain
the field values unknown and to be updated. The technique
is then termed “the alternating direction implicit” technique.
Attention should also be paid to the fact that no time-step
difference (or lagging) between electric and magnetic field
components is present in the formulations.

Applying the same procedure to all of the other five scalar
differential equations of Maxwell’s equations, one obtains the
complete set of the implicit formula.

III. ADI-FETD METHOD

This section describes the ADI-FETD formulation for an-
alyzing two-dimensional electromagnetic problems. Through-
out, all fields are assumed to be TEz polarized; the proposed
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, however, also can be applied to TMz problems with
modifications. Moreover, the method can be easily
d to three-dimensional problems.

Maxwell curl equations governing the solution of a two-
ional problem, TEz case, i.e. Hx = Hy = Ez = 0, in
ss medium are given by:

1
μ

(
∂Bz

∂t

)
= − 1

μ
(∇× E) .ẑ

ε

(
∂E
∂t

)
= ∇×

(
1
μ

Bz ẑ
)
− J (5)

E = Exx̂ + Ey ŷ is the electric field and B = Bz ẑ is
gnetic flux density.
amined two-dimensional domain Ω in the xy-plane is
d to be discretized by a FE mesh composed by Nt

lar elements, Ne edges and Nf faces. In each point
e element, Ωe, the electric field E and the magnetic
nsity B are approximated by edge elements and facet
ts, respectively, as:

Ee(r, t) =
3∑

i=1

ei(t)Wi(r)

Be(r, t) =
1∑

i=1

bi(t)Fi(r) (6)

i(t) is the electric field circulation along the i-th edge,
the flux of the magnetic flux density through i-th face,
the Whitney 1-form vector basis function associated
i-th edge and Fi is the Whitney 2-form vector basis
n associated to the i-th face [11], such that

W ∈ H(curl; Ω) = {u : ∇× u ∈ [L2(Ω)]3}
F ∈ H(div; Ω) = {u : ∇.u ∈ L2(Ω)} (7)

itney 1-forms, the basis functions are well known by
or example, for edge{mn} where m and n are nodes
dge, it is:

W = ξm∇ξn − ξn∇ξm (8)

ξm is the Lagrange interpolation polynomial at vertex
. Similarly, the vector basis functions for Whitney 2-
ssociated with a particular facet{mnp} where m,n
re nodes of the face, can be written as:

(ξm∇ξn ×∇ξp + ξn∇ξp ×∇ξm + ξp∇ξm ×∇ξn)
(9)

Galerkin method is applied to the Maxwell curl equa-
) using the field approximations (6). Using the ADI
re for time marching, which was explained in the
s section, the following equations are obtained:
n + 1

2 )th time step

Ge
z

bn+ 1
2 − bn

Δt/2
= −

(
Ke

1en+ 1
2 + Ke

2en
)

(Ce
x + Ce

y)
en+ 1

2 − en

Δt/2
=

Le
1b

n+ 1
2 + Le

2b
n − qen+ 1

2 (10)



2) (n + 1)th time step

Ge
z

bn+1 − bn+ 1
2

Δt/2
= −

(
Ke

1en+ 1
2 + Ke

2en+1
)

(Ce
x + Ce

y)
en+1 − en+ 1

2

Δt/2
=

Le
1b

n+ 1
2 + Le

2b
n+1 − qen+1 (11)

where the matrices are given by:

Ge
zij =

〈
Fi, μ

−1Fj

〉
Ωe

Ke
1 ij =

〈
Fi, μ

−1∇× (Wj .x̂) x̂
〉
Ωe

Ke
2 ij =

〈
Fi, μ

−1∇× (Wj .ŷ) ŷ
〉
Ωe

(Ce
x + Ce

y) = Ce
ij = 〈Wi, εWj〉Ωe

Le
1ij =

〈
Fj , μ

−1∇× (Wi.x̂) x̂
〉
Ωe

= Ke
1

T
ij

Le
2ij =

〈
Fj , μ

−1∇× (Wi.ŷ) ŷ
〉
Ωe

= Ke
2

T
ij

qe
i = 〈Wi, J〉Ωe

(12)

By substituting the expressions for en+ 1
2 and en+1 represented

by the second equations of (10) and (11) into their first
equations and transfering the local equations to a global
system, one can obtain:

1) (n + 1
2 )th time step(

Gz +
Δt2

4
K1C

−1L1

)
bn+ 1

2 =(
Gz − Δt2

4
K1C

−1L2

)
bn

−Δt

2
(K1 + K2)en +

Δt2

4
K1C

−1qn+ 1
2

Cen+ 1
2 =

Cen +
Δt

2
L1b

n+ 1
2 +

Δt

2
L2b

n − Δt

2
qn+ 1

2 (13)

2) (n + 1)th time step(
Gz +

Δt2

4
K2C

−1L1

)
bn+1 =(

Gz − Δt2

4
K2C

−1L2

)
bn+ 1

2

−Δt

2
(K1 + K2)en+ 1

2 +
Δt2

4
K2C

−1qn+1

Cen+1 =

Cen+ 1
2 +

Δt

2
L1b

n+ 1
2 +

Δt

2
L2b

n+1 − Δt

2
qn+1 (14)

IV. NUMERICAL RESULTS

To demonstrate the validity of the proposed ADI-FETD
method, a two-dimensional rectangular cavity was computed
with both the proposed and the conventional FETD method.
In the conventional FETD method, for time discretization a
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imensional cavity.

g scheme is applied. The cavity with the dimension of
1 mm is modeled using rectangular elements. For both
I-FDTD and the conventional FDTD, a similar mesh
2 elements and 1121 edges was used.
resonant frequencies can be obtained by launching a
gnal and applying the Fourier transform on the time
e. An excitation sinus modulated Gaussian as current
is used in this simulation. Fig. 1 shows the time

ns of this current density used as excitation.

erical Verification of the Stability

we investigate the stability of the proposed ADI-
method. Simulations were run for the homogeneous
ensional cavity with both the conventional and the
d FETD having a time step that exceeds the limit de-
d by the stability condition for the conventional FETD,
ETDMAX = 5.5×10−14Sec. in our case. Fig. 2 shows

ctric field recorded at the center of the cavity. Δt =
0−14Sec. was used with the conventional FETD, while
mes larger time step Δt = 56 × 10−14Sec. was used
e ADI-FETD scheme. As can be seen, the conventional
quickly becomes unstable [see Fig. 2(a)], while the
TD remains with stable solution [see Fig. 2(b)]. We

tended the simulation time to a much long period with
posed scheme. No instability was observed.

erical Accuracy Versus Time Step

e the proposed ADI-FETD is proven to be stable
y large time steps towards an unconditionally stable
, the selection of the time step is no longer restricted by
but by modeling accuracy. As a result, it is interesting

aningful to investigate how the time step will affect
y.

the comparision purpose, both the conventional FETD
I-FETD methods were used to simulate the cavity
he time step ΔtFETD = 5.4×10−14Sec. was chosen

ed with the conventional FETD, while different values
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Fig. 2. Time-domain electric fields at the center of the cavity recorded with
the conventional FETD and the proposed ADI-FETD. (a) Conventional FETD
solution that becomes unstable with Δt = 5.6 × 10−14Sec.(b) Proposed
ADI-FETD solution with Δt = 56 × 10−14Sec.

of time step Δti were used with the proposed FETD to
check for the accuracy. Table I presents the simulation results
for the dominant mode which is TE32 in the cavity. The
dominant mode is determined according to the frequency
components of the excitation and its position. As can be
seen, the relative errors of the ADI-FETD increase with the
time step. These errors are completely due to the modeling
accuracy of the numerical algorithm, such as the numerical
dispersion. The tradeoff to the increased errors is, however,
the reduction in the number of the iterations and the CPU
time. By increasing the time step the conventional FETD
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TABLE I

OSED ADI-FETD SIMULATION RESULTS WITH DIFFERENT Δt

alytical The proposed ADI-FETD scheme

lt (GHz)
Δt1 = 6ΔtFETD Δt2 = 10ΔtFETD

Result Relative
(GHz) error

Result Relative
(GHz) error

40.59 550.30 1.85% 558.10 3.33%

s diverge (become unstable), while the proposed FETD
es to produce stable results with increasing errors that
may not be acceptable depending on the applications
rs’ specifications.

V. CONCLUSIONS

ntroduce a finite element time-domain method based on
rnating-direction implicit scheme. Using the ADI for-
n, it was shown that the method is an unconditionally
cheme. Numerical simulation shows that this method
efficient, and the results agree very well with that of

ventional FETD method which uses a leap-frog scheme
e discretization.
have explained the ADI-FETD method for a two-
ional TE wave. However, our explanation can also be
to a two-dimensional TM wave and can be extended

neral sense to a full three-dimensional wave.
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