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Abstract— We present an implicit finite element time-domain
(FETD) solution of the Maxwell equations. The time-dependent
formulation employes a time-integration method based on the
alternating-direction implicit (ADI) method. The ADI method is
directly applied to the Maxwell equations in order to obtain
an unconditionally stable FETD approach. The method uses
edge elements for electric field and facet elements for magnetic
flux density. The advantage of this formulation based on the
ADI scheme is that the time step is no longer governed by the
spatial discretization of the mesh, but rather by the spectral
content of the time-dependent signal. Numerical formulations are
presented and simulation results are compared to those using the
conventional FETD method.

Index Terms— Alternating-direction implicit (ADI) method,
finite element time-domain (FETD) method, Maxwell’s equations.

I. INTRODUCTION

In the past few years, numerical methods have been ex-
tensively used to solve the Maxwell equations in the time
domain for the analysis of transient problems. Moreover, it
is often important to analyze systems in a large frequency
band. Time-domain methods are well suited to achieve this
target, because they can obtain broadband information from a
single computation. In electromagnetic compatibility (EMC)
studies or antenna analysis, for instance, we can obtain the
response of a system over a wide frequency band by using a
large-band transient signal as excitation and by applying the
Fourier transform on the results. This can give a significant
reduction of the computational cost compared to frequency
domain calculations.

Several methods can be used to calculate the time domain
solution of electromagnetic problems. The most popular one
is the finite difference time-domain (FDTD) algorithm, intro-
duced by Yee in 1966 [1]. The FDTD method discretizes the
time-dependent Maxwell curl equations using central differ-
ences in time and space and a leap-frog explicit scheme for
time integration. Its principal advantage is ease of implemen-
tation. However, in its conventional form, the grid for the
spatial discretization is Cartesian and uniform in nature. Con-
sequently, the FDTD method restricts geometry representation
to stair-stepped-shaped boundaries, which results in a large
burden on the memory resources and the CPU time, when
the method is applied to geometries with curvature and/or
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fine features. Finite element time-domain (FETD) methods
combine the advantages of a time-domain technique and the
versatility of their spatial discretization procedures [2]. They
allow accurate modeling of complex structures with arbitrary
shaped regions and take easily inhomogeneous materials into
account.

The FETD approaches developed so far can be grouped into
two classes. One class of approaches directly solves Maxwell’s
equations and operates in a leap-frog fashion similar to the
FDTD method (explicit method). These approaches are condi-
tionally stable [3], [4]. Another class of FETD approaches use
the second-order vector wave equation, or the curl-curl equa-
tion, obtained by eliminating one of the filled variables from
Maxwell’s equations. These solvers can be formulated to be
unconditionally stable [5], [6] or conditionally stable [7], [8].
In an unconditionally stable scheme the time step is not
constrained by a stability criterion. However, it is limited by
the accuracy requirement and also by the spectral content of
temporal signatures. Therefore, if the minimum cell size in
the computational domain is required to be much smaller than
the wavelength, these schemes are more efficient in terms of
computer resources such as CPU time.

Recently, a new method called the alternating direction
implicit finite-difference time-domain (ADI-FDTD) method
has been introduced to solve Maxwell’s curl equations using
finite difference discretization [9]. This method is an attractive
alternative to the standard FDTD due to its unconditional
stability with moderate computational overhead. In this paper
a FETD approach based on the ADI technique is presented.
This technique is directly applied to the first order Maxwell’s
equations and leads to an unconditionally stable approach.
The ADI technique was first applied to Yee’s grid in order
to formulate an implicit FDTD scheme [9]. Here, we applied
this technique to the FETD method to offer an unconditionally
stable finite element time-domain method.

II. ADI PRINCIPLE

For explanation of the ADI method as a technique for
the development of an implicit integration scheme, the time-
dependent curl vector equations of Maxwell’s equations are
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considered:
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These equations can be cast into six scalar partial differen-
tial equations in the Cartesian coordinates. We consider the
following scalar equation from the above given system:

OH, 1 (0E, OE,

o pu ( dy ox >
By applying the ADI principle which is widely used in solving
parabolic equations [10], the computation of equation (2) for
the FETD solution marching from the nth time step to the
(n + 1)th time step is broken up into two computational
subadvancements: the advancement from the nth time step
to the (n + 1/2)th time step and the advancement from the
(n + 1/2)th time step to the (n + 1)th time step. More
specifically, the two substeps are as follows:

1) For the first half-step, i.e., at the (n + 1/2)th time
step, the first partial derivative on the right hand side
of (2), OE,/dy, is replaced with its unknown pivotal
values at (n+ 1/2)th time step; while the second partial
derivatives on the right hand side, E, /O, is replaced
with its known values at the previous nth time step. In
other words:
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2) For the second half time step, i.e., at (n + 1)th time
step, the second term on the right hand side, 0F, /o,
is replaced with its unknown pivotal values at (n + 1)th
time step; while the first term, JF,. /dy, is replaced with
its known values at the previous (n + 1/2)th time step.
In other words:
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The above two substeps represent the alternations in the FETD
recursive computation directions in the sequence of the terms,
the first and the second term. They result in the implicit
formulations as the right hand side’s of the equations contain
the field values unknown and to be updated. The technique
is then termed “the alternating direction implicit” technique.
Attention should also be paid to the fact that no time-step
difference (or lagging) between electric and magnetic field
components is present in the formulations.

Applying the same procedure to all of the other five scalar
differential equations of Maxwell’s equations, one obtains the
complete set of the implicit formula.

III. ADI-FETD METHOD

This section describes the ADI-FETD formulation for an-
alyzing two-dimensional electromagnetic problems. Through-
out, all fields are assumed to be T'E, polarized; the proposed

scheme, however, also can be applied to 7'M, problems with
minor modifications. Moreover, the method can be easily
extended to three-dimensional problems.

The Maxwell curl equations governing the solution of a two-
dimensional problem, T'E, case, i.e. H, = H, = E, =0, in
a lossless medium are given by:

1/0B.\ 1 .

OE 1.
€ (6)75) =V x <MBZZ> —J 5)

where E = E X + E,¥ is the electric field and B = B,7 is
the magnetic flux density.

The examined two-dimensional domain 2 in the xy-plane is
assumed to be discretized by a FE mesh composed by N,
triangular elements, N. edges and Ny faces. In each point
r of the element, 2¢, the electric field E and the magnetic
flux density B are approximated by edge elements and facet
elements, respectively, as:

B(r,t) = Z bi (£)F;(r) (6)

where ¢;(t) is the electric field circulation along the i-th edge,
b;(t) is the flux of the magnetic flux density through i-th face,
W, is the Whitney 1-form vector basis function associated
to the i-th edge and F; is the Whitney 2-form vector basis
function associated to the ¢-th face [11], such that

W € H(curl; Q) = {u:V xu € [L*(Q)]*}
F € H(div; Q) = {u: V.u e L3(Q)} @)

For Whitney 1-forms, the basis functions are well known by
now. For example, for edge{mn} where m and n are nodes
of the edge, it is:

W= me§n - gnvfm ®)

where &, is the Lagrange interpolation polynomial at vertex
m [11]. Similarly, the vector basis functions for Whitney 2-
forms associated with a particular facet{mnp} where m,n
and p are nodes of the face, can be written as:

F=2 (gmvé-n X vﬁp + gnvfp X Vm + gpvfm X VSn)
(€]
The Galerkin method is applied to the Maxwell curl equa-
tions (5) using the field approximations (6). Using the ADI
procedure for time marching, which was explained in the
previous section, the following equations are obtained:
1) (n+ 1)th time step
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2) (n+ 1)th time step
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where the matrices are given by:
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By substituting the expressions for e"2 and ent! represented
by the second equations of (10) and (11) into their first
equations and transfering the local equations to a global
system, one can obtain:

1) (n+ 1)th time step
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IV. NUMERICAL RESULTS

To demonstrate the validity of the proposed ADI-FETD
method, a two-dimensional rectangular cavity was computed
with both the proposed and the conventional FETD method.
In the conventional FETD method, for time discretization a
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Fig. 1. The time variations of current density, I, used as an excitation for
the two-dimensional cavity.

leap-frog scheme is applied. The cavity with the dimension of
I mmx1 mm is modeled using rectangular elements. For both
the ADI-FDTD and the conventional FDTD, a similar mesh
with 722 elements and 1121 edges was used.

The resonant frequencies can be obtained by launching a
time signal and applying the Fourier transform on the time
response. An excitation sinus modulated Gaussian as current
density is used in this simulation. Fig. 1 shows the time
variations of this current density used as excitation.

A. Numerical Verification of the Stability

First we investigate the stability of the proposed ADI-
FETD method. Simulations were run for the homogeneous
two-dimensional cavity with both the conventional and the
proposed FETD having a time step that exceeds the limit de-
termined by the stability condition for the conventional FETD,
ie. Atpprpmax = 5.5x10714Sec. in our case. Fig. 2 shows
the electric field recorded at the center of the cavity. At =
5.6 x 10714 Sec. was used with the conventional FETD, while
a 10 times larger time step At = 56 x 10~ 14Sec. was used
with the ADI-FETD scheme. As can be seen, the conventional
FETD quickly becomes unstable [see Fig. 2(a)], while the
ADI-FETD remains with stable solution [see Fig. 2(b)]. We
also extended the simulation time to a much long period with
the proposed scheme. No instability was observed.

B. Numerical Accuracy Versus Time Step

Since the proposed ADI-FETD is proven to be stable
for very large time steps towards an unconditionally stable
scheme, the selection of the time step is no longer restricted by
stability but by modeling accuracy. As a result, it is interesting
and meaningful to investigate how the time step will affect
accuracy.

For the comparision purpose, both the conventional FETD
and ADI-FETD methods were used to simulate the cavity
again. The time step Atpprp = 5.4 x 10714 Sec. was chosen
and fixed with the conventional FETD, while different values
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Fig. 2. Time-domain electric fields at the center of the cavity recorded with
the conventional FETD and the proposed ADI-FETD. (a) Conventional FETD
solution that becomes unstable with At = 5.6 x 10~ 14 Sec.(b) Proposed
ADI-FETD solution with At = 56 x 10714 Sec.

of time step At; were used with the proposed FETD to
check for the accuracy. Table I presents the simulation results
for the dominant mode which is T E3y in the cavity. The
dominant mode is determined according to the frequency
components of the excitation and its position. As can be
seen, the relative errors of the ADI-FETD increase with the
time step. These errors are completely due to the modeling
accuracy of the numerical algorithm, such as the numerical
dispersion. The tradeoff to the increased errors is, however,
the reduction in the number of the iterations and the CPU
time. By increasing the time step the conventional FETD

TABLE I
PROPOSED ADI-FETD SIMULATION RESULTS WITH DIFFERENT At

Analytical The proposed ADI-FETD scheme
Aty = 6AtpgTD Ato = 10AtpeTD
Result (GHz) Result | Relative Result | Relative
(GHz) error (GHz) error
540.59 550.30 1.85% 558.10 3.33%

solutions diverge (become unstable), while the proposed FETD
continues to produce stable results with increasing errors that
may or may not be acceptable depending on the applications
and users’ specifications.

V. CONCLUSIONS

We introduce a finite element time-domain method based on
the alternating-direction implicit scheme. Using the ADI for-
mulation, it was shown that the method is an unconditionally
stable scheme. Numerical simulation shows that this method
is very efficient, and the results agree very well with that of
the conventional FETD method which uses a leap-frog scheme
for time discretization.

We have explained the ADI-FETD method for a two-
dimensional T E wave. However, our explanation can also be
applied to a two-dimensional 7'M wave and can be extended
in a general sense to a full three-dimensional wave.
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