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Abstract—This paper introduces the implementation of complex
frequency shifted perfectly matched layer (CFS-PML) absorbing
boundary conditions for the unconditionally stable finite-difference
Laguerre time-domain (FDLTD) method. It has been shown that the
relative performance of the CFS-PML implementations is superior to
the PML and Mur ABCs performance by an example.

1. INTRODUCTION

The FDTD method [1] is a well-known full-wave simulation methods
in the microwave and antenna engineering [2–7] but has a limitation
because of conditionally stability. On the other hand, the numerical
dispersion error of commonly unconditionally stable methods, such
as ADI-FDTD, Crank-Nicolson, and LOD-FDTD methods [8–12],
becomes bigger as the time step increases [13]. Recently, a
new unconditionally stable scheme for the simulation of Maxwell’s
equations was introduced based on the Laguerre polynomials [14].
This method is a marching-on-in-degree method instead of marching-
on-in-time method. Therefore, the stability is no longer affected by
the time step size [14–16]. The time step is used only to calculate
the Laguerre expansion coefficients of sources done only at the start
of the computations. Hence selecting a smaller value for Δt can
improve the accuracy of solution to a desired value without significant
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additional computation load. Therefore, Laguerre based method may
be computationally much more efficient than the FDTD methods [14].
All of the previous published papers have implemented the PML or
UPML for FDLTD method [17–19]. In this paper, we introduce the
CFS-PML implementation for FDLTD which improves attenuation
of evanescent waves and compare different ABCs in the FDTD and
FDLTD implementations.

2. LAGUERRE TRANSFORM

Laguerre polynomials are defined by the Rodrigues formula [20],

Lp(t) =
et

p!
dp

dtp
(
ettp

)
; p = 0, 1, . . . (1)

and the weighted Laguerre functions [15], ψp(t) = e−t/2Lp(t) are
orthogonal to each other over [0,∞), i.e.,

∞∫
0

ψp(t)ψq(t)dt =
{

0 p �= q
1 p = q

(2)

which form a complete orthonormal polynomial system in the Hilbert
space L2[0,∞) =

{
u : � C → � C

∣∣∣ ‖u‖2 =
∫ ∞
0 e−t |u(t)|2dt <∞

}
[21].

Therefore, an approximation of a function u(r, t) with a linear
combination of modified Laguerre functions,

u(r, t) =
∑N

p=0
up(r)ψp (t̄) ; t̄ = s · t (3)

converges in L2[0,∞), if ‖u‖2 =
∑N

p=0 |up|2 < ∞. In the above
equation, r= xax+yay+zaz is the position vector; s is a scaling factor
to increase the time scale to the order of second; and up(r) are the
spatial domain expansion coefficients obtained using the orthonormal
property of basis functions as,

up(r) =

∞∫
0

ψp(t̄)u(r, t̄)dt̄ (4)

As ψp(t̄) = e−st/2Lp(t̄), we have

∂tψp(t̄) = −0.5se−t̄/2Lp(t̄) + se−t̄/2∂t̄Lp(t̄) (5)

and the recursive relation Lp(t) = ∂tLp(t) − ∂tLp+1(t) [20] leads to
∂tLp(t) =

∑p−1
k=0 Lk(t). Therefore, the first-order partial derivative of
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u(r, t), with respect to the time, can be expressed as,

∂tu(r, t)=s
N∑

p=0

[
0.5up(r) +

p−1≥0∑
k=0

uk(r)

]
ψp(t̄) = s

N∑
p=0

upp(r)ψp(t̄) (6)

3. MAXWELL’S EQUATIONS IN THE LAGUERRE
DOMAIN

Maxwell’s equations characterize electromagnetic wave propagation
completely, which can be written in a matrix form as,

∂tW = (A−B)W + J. (7)

where W = [Ex, Ey, Ez,Hx,Hy,Hz]T , J = [Jx, Jy, Jz, 0, 0, 0]T , and

A =
[

0 A1/2ε
A2/2μ 0

]
, B =

[
0 A2/2ε

A1/2μ 0

]
;

A1 =

[ 0 0 ∂y

∂z 0 0
0 ∂x 0

]
, A2 =

[ 0 ∂z 0
0 0 ∂x

∂y 0 0

]
(8)

In the above equations, E is the electric field; H is the magnetic field;
J is the total current density; ε and μ are the electric permittivity
and the magnetic permeability, respectively. According to (3), the
approximation of components of (8) can be expanded as,

W (r, t) =
∞∑

p=0

wp(r)ψp(t̄) and J(r, t) =
∞∑

p=0

Jp(r)ψp(t̄) (9)

where wp = [epx, e
p
y, e

p
z , h

p
x, h

p
y, h

p
z ] and Jp = [jpx, j

p
y , j

p
z , 0, 0, 0] are

unknown coefficients. Substituting (9) into (7) and using (6), Laguerre
domain Maxwell’s equations are obtained as,

s

N∑
p=0

wpp(r)ψp(t̄) =
N∑

p=0

(A−B)wp(r)ψp(t̄) +
N∑

p=0

Jp(r)ψp(t̄) (10)

Multiplying both sides of (10) by ψm(t̄), integrating over t̄ = [0,∞)
and using (2), we get a set of (N + 1) boundary value problems as,

swmm(r) = (A−B)wm(r) + Jm(r); m = 0, 1, . . . N (11)

Using Yee’s space lattice [1] and the central difference scheme for
spatial derivatives for A and B, (11) is discretized for the numerical
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simulation. For example, ex and hx have the following relations,

emx|i,j,k − ay

(
hm

z|i,j,k − hm
z|i,j−1,k

)
− az

(
hm

y|i,j,k − hm
y|i,j,k−1

)

=
2
s
jmx|i,j,k − 2

m−1∑
d=0

edx|i,j,k (12)

hm
x|i,j,k − bz

(
emy|i,j,k+1 − emy|i,j,k

)
− by

(
emz|i,j+1,k + emz|i,j,k

)

= −2
m−1∑
d=0

hd
x|i,j,k (13)

while (i, j, k) ∈ (1 : Nx, 1 : Ny, 1 : Nz), aϑ = 1/εsΔϑ and bϑ = 1/μsΔϑ.

4. CFS-PML ABSORBING BOUNDARY CONDITION
FOR THE FDLTD

The frequency domain PML equation for Ex in the stretched co-
ordinates is given by [22]

jωεEx = s−1
y ∂yHz − s−1

z ∂zHy (14)

The stretched co-ordinate variable [23] sϑ = κϑ + σϑ/(αϑ + jωε0) is
defined for ϑ ∈ (x, y, z) while αϑ and σϑ are assumed to be positive real,
and κϑ is real and greater than 1. Considering frequency dependence
of the stretched coordinate metrics, the time domain transformation
of (14) has convolutions in the right-hand-side as [22]

ε∂tEx = s̄y(t) ∗ ∂yHz − s̄z(t) ∗ ∂zHy (15)

where s̄ϑ is the inverse Laplace transform of s−1
ϑ and

s̄ϑ(t) =
δ(t)
κϑ

− σϑu(t)
ε0κ2

ϑ

e
−

(
σϑ+κϑαϑ

ε0κϑ

)
t =

δ(t)
κϑ

− σϑu(t)
ε0κ2

ϑ

e−γϑt. (16)

Using ψm ∗ψn = ψm+n −ψm+n+1 [20], the relation of ap, bp, and cp as
the expansion coefficients of the convolution relation A = B ∗C in the
Laguerre domain is given by,

N∑
p=0

apψp =
N∑

m=0

bmψm∗
N∑

n=0

cnψn =
N∑

m=0

N∑
n=0

bmcn (ψm+n−ψm+n+1) (17)

If the left-hand-side and right-hand-side of (17) are compared on a
term-by-term Laguerre order, the following equation can be obtained,

ap = bpc0 +
p−1∑
k=0

bk
(
cp−k − cp−k−1

)
(18)
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Using (4), the expansion coefficients of the exponential function e−γϑt

in (16) is calculated analytically as (γϑ)p/(γϑ + 1)p+1. Therefore, (15)
is transformed to the Laguerre domain as,

emx|i,j,k − cy

(
hm

z|i,j,k − hm
z|i,j−1,k

)
+ cz

(
hm

y|i,j,k − hm
y|i,j,k−1

)

= −
m−1∑
p=0

(
Dp

hzyS
m−p
y −Dp

hyzS
m−p
z + 2epx|i,j,k

)
;

cϑ =
2(σϑ − ε0κϑ)
sε0εκ2

ϑΔϑ
, Sm

ϑ =
−σϑ(γϑ)m

ε0κ2
ϑ(γϑ + 1)m+1 ,

Dm
hzy =

hm
z|i,j,k − hm

z|i,j−1,k

0.5εsΔyj
, Dm

hyz =
hm

y|i,j,k − hm
y|i,j,k−1

0.5εsΔzk
(19)

Defining dϑ = εcϑ/μ, the equation for hx is obtained similarly as,

hm
x|i,j,k − dz

(
emy|i,j,k+1 − emy|i,j,k

)
+ dy

(
emz|i,j+1,k − emz|i,j,k

)

= −
m−1∑
p=0

(
Dp

eyzS
m−p
z −Dp

ezyS
m−p
y + 2hp

x|i,j,k
)
;

Dm
ezy =

emz|i,j+1,k − emz|i,j,k
0.5μsΔyj

,Dm
eyz =

emy|i,j,k+1 − emy|i,j,k
0.5μsΔzk

(20)

The other PML equations are written similarly. It is significant that
(12) and (13) in the main region and (19) and (20) in the PML
region have similar forms. To reduce the required simulation memory
and computation time, we can eliminate the unknown magnetic field
components from (12) and (19), using equations for hy and hz. For
example, (12) can be written as,

(1 + 2ayby + 2azbz) emx|i,j,k − ayby

(
emx|i,j+1,k + emx|i,j−1,k

)
−azbz

(
emx|i,j,k+1 + emx|i,j,k−1

)
+aybx

(
emy|i+1,j,k − emy|i,j,k − emy|i+1,j−1,k + emy|i,j−1,k

)
+azbx

(
emz|i+1,j,k − emz|i,j,k − emz|i+1,j,k−1 + emz|i,j,k−1

)
=

2
s
jmx|i,j,k −

2
m−1∑
d=0

(
edx|i,j,k + ayh

d
z|i,j,k − ayh

d
z|i,j−1,k − azh

d
y|i,j,k + azh

d
y|i,j,k−1

)
(21)
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Consequently, the implicit relations for the electric fields can be written
in the matrix form of,

Cem = jm +
m−1∑

d=0,m�=0

f
(
ed, hd

)
; m = 0, 1, . . . N (22)

where em = [emx e
m
y e

m
z ]T , jm = [jmx j

m
y j

m
z ]T , hm = [hm

x h
m
y h

m
z ]T , and f

is a linear function of ed and hd. The coefficient matrix C in (22) is
a constant matrix with respect to m. Therefore, we need to perform
the matrix inversion only once at the beginning of the computation.
Starting from m = 0 and using calculated coefficients of current source
jm by (4), the right-hand-side of (22) is known, and the unknown
coefficients em can be calculated recursively for m > 0. Then, the
magnetic field coefficients can be obtained from (13) and (20). Finally,
the values of fields in the time domain are calculated from the above
coefficients and (3).

5. NUMERICAL RESULTS

In order to evaluate the presented boundary condition, a simple
experiment was undertaken. The testing procedure is a 2D example
containing two cartesian grids. The testing procedure is a 2D example
containing two cartesian grids: A small 50 × 50 cells grid which is
truncated by different numerical absorbers and a large 250 × 250 cells
grids with an arbitrary boundary condition, as shown in Fig. 1. The
model was constructed with a hard sinusoid source in the middle of
the grids. The source was set to have a wavelength of 1, and the
FDTD grids have a distance of Δx = 0.05, satisfying the λ/20 sampling
required for high-quality finite difference results. Considering routes
L1 and L2 and domains D1 and D2 in Fig. 1, the simulation time was
set so that the reflections from the ABC under test (L2) propagate
back to the observation point, but any back reflections generated by
the boundary of computational domain (L1) would not have sufficient
time to propagate back to the observation point. Therefore, the field
values collected with D2 have the adverse effects of back reflections
from the ABCs present in them, while the field values collected with
D1 have not been affected by any back reflections.

The error introduced by the absorbing boundary condition is
determined by calculating the Root-Mean Square (RMS) error between
the field value in D1 and the corresponding point in D2 for every
time step. Fig. 2 shows the normalized magnitude of electric field
respect to the magnitude of source in an example observation point
(10, 10) calculated by FDTD and FDLTD methods. The results are
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Figure 1. Geometry for the calculation of the error introduced by
different absorbing boundary conditions.
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Figure 2. Normalized magnitude of electric field in an example
observation point calculated by FDTD and FDLTD methods.

very close to each other, while the FDLTD is 10 times faster than
the FDTD in this example. Fig. 3 shows the RMS error of FDTD
and FDLTD implementations with 2nd order Mur, PML (which is
equivalent to the CFS-PML with α = 0) with 8 and PML with 16
layers, and CFS-PML with 4 layers as absorbing boundary condition.
Each boundary condition gives approximately the same accuracy for
FDTD and FDLTD methods. As can be seen, CFS-PML with only
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Figure 3. Comparisons between the Mur, PML and CFS-PML ABCs
in the FDTD and FDLTD implementations.

4 layers works similarly to PML with 16 layers and is superior to the
other ABCs. The FDLTD simulation contains 100 modified Laguerre
functions. Simulation results show that the error of approximation
is minimal for 5 ≤ s ≤ 35 (Fig. 3). The profile of the PML
parameters is determined similar to [22] as α = 0.05, κmax = 11.0,
and σmax = 0.7/30π

√
εrΔx with a 4th order polynomial scaling.

6. CONCLUSION

We have proposed a new CFS-PML implementation for the
unconditionally stable FDLTD method which can also implement PML
when α = 0. Simulation results show that CFS-PML with only 4 layers
works similarly to PML with 16 layers and is superior to Mur ABC.
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